Diffusive Traversal Time of a One-Dimensional Medium

C. W. Gardiner ${ }^{1}$

Received April 16, 1987

Abstract

It is shown that the mean time to traverse a medium in a range a, b from b to a is given by $T=(a-b)^{2} / 3 D$, where D is the diffusion coefficient.

KEY WORDS: Fokker-Planck equation; diffusive; traversal; diffusive traversal; mean exit time.

In a recent paper, Landauer and Büttiker ${ }^{(1)}$ considered the problem of a particle diffusing from one side of a medium to the other as part of their investigation of magnetically induced interference in a metallic wire. They derived a quite simple formula for a particle to diffuse from point a to point b under the condition that it does not leave the interval between a and b until its exit at b.

In fact, this is the limitation case of the general problem: if a diffusing particle is located initially at x within a medium that extends from a to b, what is the mean time to exit through the end a ?

This problem is treated in Section 5.2.8 of Ref. 2, and in summary, the procedure is as follows. Let

$$
\begin{align*}
\pi_{a}(x) & =\text { probability of exit through } a \tag{1}\\
\pi_{b}(x) & =\text { probability of exit through } b \tag{2}\\
T(a, x) & =\text { mean time to exit through } a \tag{3}
\end{align*}
$$

Then it is shown in this reference that $\pi_{a}(x)$ and $T(a, x)$ are given by solving

$$
\begin{equation*}
\frac{1}{2} D \partial_{x}^{2}\left[\pi_{a}(x) T(a, x)\right]=-\pi_{a}(x) \tag{4}
\end{equation*}
$$

[^0]subject to the boundary conditions
\[

$$
\begin{equation*}
\pi_{a}(a) T(a, a)=\pi_{a}(b) T(a, b)=0 \tag{5}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\frac{1}{2} D \partial_{x}^{2}\left[\pi_{a}(x)\right]=0 \tag{6}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{equation*}
\pi_{a}(a)=1, \quad \pi_{a}(b)=0 \tag{7}
\end{equation*}
$$

The equations are straightforwardly integrated to give

$$
\begin{equation*}
\pi_{a}(x)=\frac{b-x}{b-a} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi_{a}(x) T(a, x)=\frac{(x-b)(x+a-2 b)(x-a)}{3 D(b-a)} \tag{9}
\end{equation*}
$$

and hence

$$
\begin{equation*}
T(a, x)=(x-a)(2 b-x-a) / 3 D \tag{10}
\end{equation*}
$$

In the limiting case of $x \rightarrow b$ the probability of exit through a is zero, as shown by (7); this is obvious, since a particle placed on the edge of the medium is certain to exit there immediately. Nevertheless, in the limit that x is very close to b, the mean time to make the exit at a is well denined:

$$
\begin{equation*}
T(a, b) \rightarrow(a-b)^{2} / 3 D \tag{11}
\end{equation*}
$$

If the diffusing medium is an approximation to a one-dimensional random walk, then

$$
\begin{align*}
b-a & =L l \tag{12}\\
D & =l^{2} / \tau \tag{13}
\end{align*}
$$

where l is the distance between lattice points, L is the number of lattice points traversed, and τ is the time between steps. Then

$$
\begin{equation*}
T(a, b)=\frac{1}{3} L^{2} \tau \tag{14}
\end{equation*}
$$

and hence the mean number of steps is $L^{2} / 3$, as was derived by Landauer and Büttiker. ${ }^{(1)}$

REFERENCES

1. R. Landauer and M. Büttiker, Phys. Rev. B, to be published.
2. C. W. Gardiner, A Handbook of Stochastic Methods (Springer, Heidelberg, 1986).

[^0]: ${ }^{1}$ Physics Department, University of Waikato, Hamilton, New Zealand.

